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1 Bonami’s Lemma and Hypercontractivity

1.1 B-reasonable random variables and Bonami’s lemma

Definition 1.1. For a real B ≥ 1, a random variable X is B-reasonable if

E[X4] ≤ B(E[X2])2.

This property is scaling invariant: If X is B-reasonable, then cX is also B-reasonable
for B ∈ R.

Example 1.1. The constant random variable X = 1 is 1-reasonable.

Example 1.2. X ∼ {±1} is 1-reasonable.

Example 1.3. A standard Gaussian random variable Z ∼ N(0, 1) is 3-reasonable.

Example 1.4. The uniform random variable Y ∼ U [−1, 1] is 9
5 -reasonable.

Example 1.5. Let

X =

{
1 with probability 1/2n

0 with probability 1− 1/2n.

Then E[X4] = 1/2n and E[X2] = 1/2n, so B = 2n. We think of this random variable as
not so reasonable because with a small probability, it can be 1, which “surprises” us.

Proposition 1.1 (Concentration). Let X ≥ 0 a.s. If X is B-reasonable, then

P(X ≥ t||X‖2) ≤
B

t4
.

Here, ‖X‖2 :=
√

E[X2]. We can restate the definition of a B-reasonable random
variable as

‖X‖4 ≤ B1/4‖X‖2.
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Proof. Use Markov’s inequality.

Remark 1.1. Compare this concentration result with Chebyshev’s inequality, which gives
a rate of decay of 1/t2.

Proposition 1.2 (Anti-concentration). Let X ≥ 0 a.s. If X is B-reasonable, then for
0 ≤ t ≤ 1,

P(X ≥ t‖X‖2) ≥
(1− t2)2

B
.

We will not prove this, but you can prove it as an exercise or find the proof in the
textbook.

Lemma 1.1 (Bonami). Let f : {±1}n → R have deg f ≤ k, and let X ∼ {±1}n. Then
f(X) is 9k-reasonable. That is,

EX∼{±1}n [f(X)4] ≤ 9k(EX∼{±1}n [f(X)2])2.

We can also think of this as

‖f‖4 ≤ (
√

3)k‖f‖2.

Proof of Bonami’s lemma. Recall the derivative

Dif(x) =
f(xi 7→+1)− f(xi 7→−1)

2
.

We can similarly define the operator

Eif(x) =
f(xi 7→+1) + f(xi 7→−1)

2
.

These two give a representation of f :

f(x) = Xi ·Dif(x) + Eif(x).

Note that Dif and Eif are functions that don’t depend on xi. In particular, Dif has
degree ≤ k − 1, and Eif has degree ≤ k.

Now we proceed by induction on n and k (for each k, we do induction on n, then overall
induct over k). For n = 0, a degree 0 function is a constant, so this inequality holds. If
n ≥ 1, write

f(x) = Xn ·Dnf(x) = Enf(x),

and define the random variables

d = Dnf(X), e = Enf(X), where X1, . . . , Xn−1 ∼ {±1}.
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Then

EX∼{±1}n [f(X)4] = E[(Xnd+ e)4],

which we want to compare to

9k(E[f(X)2])2 = 9k(E[Xnd+ w)2])2.

To compare these, use the binomial theorem and the linearity of expectation:

E[(Xnd+ e)4] = E[X4
nd

4] + 4�����E[X3
nd

3e] + 6E[X2
nd

2e2] + 4�����E[Xnde
3] + E[e4]

= E[d4] + 6E[d2e2] + E[e4].

On the other side, we have

9k(E[(Xnd+ w)2])2 = 9k(E[X2
nd

2] + 2�����E[Xnde] + E[e2])2

= 9k((E[d2])2 + 2E[d2]E[e2] + (E[e2])2)

By the inductive hypothesis, we know that E[d4] ≤ 9k−1(E[d2])2 and E[d4] ≤ 9k(E[e2])2.
By Cauchy-Schwarz,

6E[d2e2] ≤ 6
√
E[d4]E[e4]

≤ 6
√

9k−1 E[d2]
√

9k E[e2]

= 2 · 9k E[d2]E[e2].

Now compare the two sides term by term.

Recall the noise operator Tρf(x) = EY ρ-corr. with x[f(Y )]. We know that T̂ρf(S) =

ρ|S|/2f̂(S).

Corollary 1.1. Let f : {±1}n → R, and let f=k =
∑
|S|=k f̂(S)2χS. Then

‖T1/3f=k‖4 ≤ ‖f=k‖2.

Proof. Using Bonami’s lemma,

‖( 1√
3
)kf=k‖4 = ( 1√

3
)k‖f=k4 ≤ ‖f=k‖2.

1.2 Hypercontractivity and its consequences

Theorem 1.1 ((4, 2)-hypercontractivity). For all f : {±1}n → R,

‖T1/√3f‖4 ≤ ‖f‖2.
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More generally, we can say ‖T1/√q−1f‖q ≤ ‖f‖2 for all q ≥ 2.

Proof. The proof is similar to the proof of Bonami’s lemma.

Bonami’s lemma tells you how reasonable low-degree functions are. On the other hand,
hypercontractivity tells you how smooth the function becomes once you apply the noise
operator.

Theorem 1.2 ((2, 4/3)-hypercontractivity). For all f : {±1}n → R,

‖T1/√3f‖2 ≤ ‖f‖4/3.

Proof.

‖T1/√3f‖
2
2 = E[T1/

√
3f(X)2]

= 〈T1/√3f(X)2, T1/
√
3f(X)2〉

=
∑
S

(
1√
3

)|S|
f̂(S)

(
1√
3

)|S|
f̂(S)

=
∑
S

(
1

3

)|S|
f̂(S)2

= 〈f, T1/3f〉
Using Hölder’s inequality with p = 4/3 and q = 4,

≤ ‖f‖4/3‖T1/3f‖4
Using the (4, 2)-Hypercontractivity with T1/

√
3(T1/

√
3f),

≤ ‖f‖4/3‖T1/√3f‖2.

Now divide both sides by ‖T1/√3f‖2.

Corollary 1.2. For all f : {±1}n → R,

Stab1/3(f) ≤ ‖f‖24/3.

Proof.

Stab1/3(f) ≤ 〈T1/√3f, T1/√3f〉

≤ ‖T1/√3f‖
2
2

≤ ‖f‖24/3.
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Corollary 1.3 (Small-set expansion of noisy hypercube). Let f : {±1}n → {0, 1} and let
α = E[f ] = PX∼{±1}n(f(X) = 1). Then

Stab1/3(f) ≤

(
(E[|f(X)|4/3])3/4

α

)2

= α3/2.

Remark 1.2. This has a combinatorial interpretation:

Stab1/3(f) = E(X,Y ) 1/3-corr.[f(X)f(Y )]

= P(f(X) = 1)P(f(Y ) = 1 | f(X) = 1)

= αP(f(Y ) = 1 | f(X) = 1),

So this says that
P(f(Y ) = 1 | f(X) = 1) ≤ α1/2.

Thinking of this in terms of a random walk on the hypercube, if we take f(x) = 1{x∈A},
we get behavior of the form

P(Y /∈ A | X ∈ A) ≥ 1− α1/2.

Here is a key corollary:

Corollary 1.4. Let f : {±1}n → {±1}, and let g = Dif : {±1}n → {+1, 0,−1}. Define
the 1/3-influence as

Inf
(1/3)
i (f) := Stab1/3(Dif) =

∑
S

f̂(S)2
(

1

3

)|S|−1
.

Then
Inf

(1/3)
i (f) ≤ (Infi(f))3/2.

Proof. Since Dif takes ±1-values, we have

Stab1/3(Dif) ≤ ‖Dif‖24/3
= ((E[|Dif(X)|]4/3)3/4)2

= ((E[|Dif(X)|]2︸ ︷︷ ︸
Infi(f)

)3/4)2

= (Infi(f))3/2.

Next time, we will see an application of hypercontractivity to proving the KKL theorem:
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Theorem 1.3 (Kahn-Kalai-Linial). For f : {±1}n → {±1},

Max Inf(f) ≥ Ω(Var(f)
log n

n
).

Remark 1.3. Compare this to the Poincaré inequality, which gives

Max Inf(f) ≥ Var(f)

n
.

We will also see Friedgut’s theorem and the FKN theorem:

Theorem 1.4 (Friedgut). Any function f : {±1}n → {±1} is ε-close to a 2O(I(f))/ε-junta.

Theorem 1.5 (Friedgut-Kalai-Naor). If f : {±1}n → {±1} has W≤1(f) ≥ 1− ε (that is,∑
|S|≤1 f̂(S)2 ≥ 1− ε), then f is O(ε)-close to a dictator function.
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