Computer Science 294 Lecture 17 Notes

Daniel Raban
March 14, 2023

1 Bonami's Lemma and Hypercontractivity

1.1 B-reasonable random variables and Bonami's lemma

Definition 1.1. For a real $B \geq 1$, a random variable X is B-reasonable if

$$
\mathbb{E}\left[X^{4}\right] \leq B\left(\mathbb{E}\left[X^{2}\right]\right)^{2}
$$

This property is scaling invariant: If X is B-reasonable, then $c X$ is also B-reasonable for $B \in \mathbb{R}$.

Example 1.1. The constant random variable $X=1$ is 1 -reasonable.
Example 1.2. $X \sim\{ \pm 1\}$ is 1-reasonable.
Example 1.3. A standard Gaussian random variable $Z \sim N(0,1)$ is 3 -reasonable.
Example 1.4. The uniform random variable $Y \sim U[-1,1]$ is $\frac{9}{5}$-reasonable.
Example 1.5. Let

$$
X= \begin{cases}1 & \text { with probability } 1 / 2^{n} \\ 0 & \text { with probability } 1-1 / 2^{n}\end{cases}
$$

Then $\mathbb{E}\left[X^{4}\right]=1 / 2^{n}$ and $\mathbb{E}\left[X^{2}\right]=1 / 2^{n}$, so $B=2^{n}$. We think of this random variable as not so reasonable because with a small probability, it can be 1, which "surprises" us.

Proposition 1.1 (Concentration). Let $X \geq 0$ a.s. If X is B-reasonable, then

$$
\mathbb{P}\left(X \geq t\|X\|_{2}\right) \leq \frac{B}{t^{4}}
$$

Here, $\|X\|_{2}:=\sqrt{\mathbb{E}\left[X^{2}\right]}$. We can restate the definition of a B-reasonable random variable as

$$
\|X\|_{4} \leq B^{1 / 4}\|X\|_{2} .
$$

Proof. Use Markov's inequality.
Remark 1.1. Compare this concentration result with Chebyshev's inequality, which gives a rate of decay of $1 / t^{2}$.

Proposition 1.2 (Anti-concentration). Let $X \geq 0$ a.s. If X is B-reasonable, then for $0 \leq t \leq 1$,

$$
\mathbb{P}\left(X \geq t\|X\|_{2}\right) \geq \frac{\left(1-t^{2}\right)^{2}}{B}
$$

We will not prove this, but you can prove it as an exercise or find the proof in the textbook.

Lemma 1.1 (Bonami). Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ have $\operatorname{deg} f \leq k$, and let $X \sim\{ \pm 1\}^{n}$. Then $f(X)$ is 9^{k}-reasonable. That is,

$$
\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X)^{4}\right] \leq 9^{k}\left(\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X)^{2}\right]\right)^{2}
$$

We can also think of this as

$$
\|f\|_{4} \leq(\sqrt{3})^{k}\|f\|_{2}
$$

Proof of Bonami's lemma. Recall the derivative

$$
D_{i} f(x)=\frac{f\left(x^{i \mapsto+1}\right)-f\left(x^{i \mapsto-1}\right)}{2} .
$$

We can similarly define the operator

$$
E_{i} f(x)=\frac{f\left(x^{i \mapsto+1}\right)+f\left(x^{i \mapsto-1}\right)}{2} .
$$

These two give a representation of f :

$$
f(x)=X_{i} \cdot D_{i} f(x)+E_{i} f(x)
$$

Note that $D_{i} f$ and $E_{i} f$ are functions that don't depend on x_{i}. In particular, $D_{i} f$ has degree $\leq k-1$, and $E_{i} f$ has degree $\leq k$.

Now we proceed by induction on n and k (for each k, we do induction on n, then overall induct over k). For $n=0$, a degree 0 function is a constant, so this inequality holds. If $n \geq 1$, write

$$
f(x)=X_{n} \cdot D_{n} f(x)=E_{n} f(x),
$$

and define the random variables

$$
d=D_{n} f(X), \quad e=E_{n} f(X), \quad \text { where } X_{1}, \ldots, X_{n-1} \sim\{ \pm 1\}
$$

Then

$$
\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X)^{4}\right]=\mathbb{E}\left[\left(X_{n} d+e\right)^{4}\right],
$$

which we want to compare to

$$
\left.9^{k}\left(\mathbb{E}\left[f(X)^{2}\right]\right)^{2}=9^{k}\left(\mathbb{E}\left[X_{n} d+w\right)^{2}\right]\right)^{2} .
$$

To compare these, use the binomial theorem and the linearity of expectation:

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{n} d+e\right)^{4}\right] & =\mathbb{E}\left[X_{n}^{4} d^{4}\right]+4 \mathbb{E}\left[X_{n}^{3} d^{3} e\right]+6 \mathbb{E}\left[X_{n}^{2} d^{2} e^{2}\right]+4 \mathbb{E}\left[X_{n} d e^{3}\right]+\mathbb{E}\left[e^{4}\right] \\
& =\mathbb{E}\left[d^{4}\right]+6 \mathbb{E}\left[d^{2} e^{2}\right]+\mathbb{E}\left[e^{4}\right] .
\end{aligned}
$$

On the other side, we have

$$
\begin{aligned}
9^{k}\left(\mathbb{E}\left[\left(X_{n} d+w\right)^{2}\right]\right)^{2} & =9^{k}\left(\mathbb{E}\left[X_{n}^{2} d^{2}\right]+2 \mathbb{E}\left[X_{n} d e\right]+\mathbb{E}\left[e^{2}\right]\right)^{2} \\
& =9^{k}\left(\left(\mathbb{E}\left[d^{2}\right]\right)^{2}+2 \mathbb{E}\left[d^{2}\right] \mathbb{E}\left[e^{2}\right]+\left(\mathbb{E}\left[e^{2}\right]\right)^{2}\right)
\end{aligned}
$$

By the inductive hypothesis, we know that $\mathbb{E}\left[d^{4}\right] \leq 9^{k-1}\left(\mathbb{E}\left[d^{2}\right]\right)^{2}$ and $\mathbb{E}\left[d^{4}\right] \leq 9^{k}\left(\mathbb{E}\left[e^{2}\right]\right)^{2}$. By Cauchy-Schwarz,

$$
\begin{aligned}
6 \mathbb{E}\left[d^{2} e^{2}\right] & \leq 6 \sqrt{\mathbb{E}\left[d^{4}\right] \mathbb{E}\left[e^{4}\right]} \\
& \leq 6 \sqrt{9^{k-1}} \mathbb{E}\left[d^{2}\right] \sqrt{9^{k}} \mathbb{E}\left[e^{2}\right] \\
& =2 \cdot 9^{k} \mathbb{E}\left[d^{2}\right] \mathbb{E}\left[e^{2}\right]
\end{aligned}
$$

Now compare the two sides term by term.
Recall the noise operator $T_{\rho} f(x)=\mathbb{E}_{Y \rho \text {-corr. with } x}[f(Y)]$. We know that $\widehat{T_{\rho} f}(S)=$ $\rho^{|S| / 2} \widehat{f}(S)$.
Corollary 1.1. Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, and let $f^{=k}=\sum_{|S|=k} \widehat{f}(S)^{2} \chi_{S}$. Then

$$
\left\|T_{1 / 3} f^{=k}\right\|_{4} \leq\left\|f^{=k}\right\|_{2}
$$

Proof. Using Bonami's lemma,

$$
\left\|\left(\frac{1}{\sqrt{3}}\right)^{k} f^{=k}\right\|_{4}=\left(\frac{1}{\sqrt{3}}\right)^{k}\left\|f_{4}^{=k} \leq\right\| f^{=k} \|_{2} .
$$

1.2 Hypercontractivity and its consequences

Theorem 1.1 ((4,2)-hypercontractivity). For all $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\left\|T_{1 / \sqrt{3}} f\right\|_{4} \leq\|f\|_{2} .
$$

More generally, we can say $\left\|T_{1 / \sqrt{q-1}} f\right\|_{q} \leq\|f\|_{2}$ for all $q \geq 2$.
Proof. The proof is similar to the proof of Bonami's lemma.
Bonami's lemma tells you how reasonable low-degree functions are. On the other hand, hypercontractivity tells you how smooth the function becomes once you apply the noise operator.

Theorem 1.2 ((2,4/3)-hypercontractivity). For all $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\left\|T_{1 / \sqrt{3}} f\right\|_{2} \leq\|f\|_{4 / 3} .
$$

Proof.

$$
\begin{aligned}
\left\|T_{1 / \sqrt{3}} f\right\|_{2}^{2} & =\mathbb{E}\left[T_{1 / \sqrt{3}} f(X)^{2}\right] \\
& =\left\langle T_{1 / \sqrt{3}} f(X)^{2}, T_{1 / \sqrt{3}} f(X)^{2}\right\rangle \\
& =\sum_{S}\left(\frac{1}{\sqrt{3}}\right)^{|S|} \widehat{f}(S)\left(\frac{1}{\sqrt{3}}\right)^{|S|} \widehat{f}(S) \\
& =\sum_{S}\left(\frac{1}{3}\right)^{|S|} \widehat{f}(S)^{2} \\
& =\left\langle f, T_{1 / 3} f\right\rangle
\end{aligned}
$$

Using Hölder's inequality with $p=4 / 3$ and $q=4$,

$$
\leq\|f\|_{4 / 3}\left\|T_{1 / 3} f\right\|_{4}
$$

Using the (4, 2)-Hypercontractivity with $T_{1 / \sqrt{3}}\left(T_{1 / \sqrt{3}} f\right)$,

$$
\leq\|f\|_{4 / 3}\left\|T_{1 / \sqrt{3}} f\right\|_{2}
$$

Now divide both sides by $\left\|T_{1 / \sqrt{3}} f\right\|_{2}$.
Corollary 1.2. For all $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\operatorname{Stab}_{1 / 3}(f) \leq\|f\|_{4 / 3}^{2}
$$

Proof.

$$
\begin{aligned}
\operatorname{Stab}_{1 / 3}(f) & \leq\left\langle T_{1 / \sqrt{3}} f, T_{1 / \sqrt{3}} f\right\rangle \\
& \leq\left\|T_{1 / \sqrt{3}} f\right\|_{2}^{2} \\
& \leq\|f\|_{4 / 3}^{2} .
\end{aligned}
$$

Corollary 1.3 (Small-set expansion of noisy hypercube). Let $f:\{ \pm 1\}^{n} \rightarrow\{0,1\}$ and let $\alpha=\mathbb{E}[f]=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X)=1)$. Then

$$
\operatorname{Stab}_{1 / 3}(f) \leq\left(\frac{\left(\mathbb{E}\left[|f(X)|^{4 / 3}\right]\right)^{3 / 4}}{\alpha}\right)^{2}=\alpha^{3 / 2}
$$

Remark 1.2. This has a combinatorial interpretation:

$$
\begin{aligned}
\operatorname{Stab}_{1 / 3}(f) & =\mathbb{E}_{(X, Y) 1 / 3 \text {-corr. }[f(X) f(Y)]} \\
& =\mathbb{P}(f(X)=1) \mathbb{P}(f(Y)=1 \mid f(X)=1) \\
& =\alpha \mathbb{P}(f(Y)=1 \mid f(X)=1),
\end{aligned}
$$

So this says that

$$
\mathbb{P}(f(Y)=1 \mid f(X)=1) \leq \alpha^{1 / 2} .
$$

Thinking of this in terms of a random walk on the hypercube, if we take $f(x)=\mathbb{1}_{\{x \in A\}}$, we get behavior of the form

$$
\mathbb{P}(Y \notin A \mid X \in A) \geq 1-\alpha^{1 / 2} .
$$

Here is a key corollary:
Corollary 1.4. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, and let $g=D_{i} f:\{ \pm 1\}^{n} \rightarrow\{+1,0,-1\}$. Define the $1 / 3$-influence as

$$
\operatorname{Inf}_{i}^{(1 / 3)}(f):=\operatorname{Stab}_{1 / 3}\left(D_{i} f\right)=\sum_{S} \widehat{f}(S)^{2}\left(\frac{1}{3}\right)^{|S|-1}
$$

Then

$$
\operatorname{Inf}_{i}^{(1 / 3)}(f) \leq\left(\operatorname{Inf}_{i}(f)\right)^{3 / 2}
$$

Proof. Since $D_{i} f$ takes ± 1-values, we have

$$
\begin{aligned}
\operatorname{Stab}_{1 / 3}\left(D_{i} f\right) & \leq\left\|D_{i} f\right\|_{4 / 3}^{2} \\
& =\left(\left(\mathbb{E}\left[\left|D_{i} f(X)\right|\right]^{4 / 3}\right)^{3 / 4}\right)^{2} \\
& =((\underbrace{\mathbb{E}\left[\mid D_{i} f(X)\right]^{2}}_{\operatorname{Inf}_{i}(f)})^{3 / 4})^{2} \\
& =\left(\operatorname{Inf}_{i}(f)\right)^{3 / 2} .
\end{aligned}
$$

Next time, we will see an application of hypercontractivity to proving the KKL theorem:

Theorem 1.3 (Kahn-Kalai-Linial). For $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$,

$$
\operatorname{Max} \operatorname{Inf}(f) \geq \Omega\left(\operatorname{Var}(f) \frac{\log n}{n}\right)
$$

Remark 1.3. Compare this to the Poincaré inequality, which gives

$$
\operatorname{Max} \operatorname{Inf}(f) \geq \frac{\operatorname{Var}(f)}{n}
$$

We will also see Friedgut's theorem and the FKN theorem:
Theorem 1.4 (Friedgut). Any function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is ε-close to a $2^{O(\mathbb{I}(f)) / \varepsilon}$-junta.
Theorem 1.5 (Friedgut-Kalai-Naor). If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has $W^{\leq 1}(f) \geq 1-\varepsilon$ (that is, $\left.\sum_{|S| \leq 1} \widehat{f}(S)^{2} \geq 1-\varepsilon\right)$, then f is $O(\varepsilon)$-close to a dictator function.

