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1 Bonami’s Lemma and Hypercontractivity

1.1 B-reasonable random variables and Bonami’s lemma

Definition 1.1. For a real B > 1, a random variable X is B-reasonable if
E[X?] < B(E[X?])%

This property is scaling invariant: If X is B-reasonable, then cX is also B-reasonable
for B € R.

Example 1.1. The constant random variable X = 1 is 1-reasonable.
Example 1.2. X ~ {£1} is 1-reasonable.

Example 1.3. A standard Gaussian random variable Z ~ N(0,1) is 3-reasonable.

Example 1.4. The uniform random variable Y ~ U[—1,1] is %—reasonable.

Example 1.5. Let
¥ 1 with probability 1/2"
0 with probability 1 —1/2".
Then E[X*] = 1/2" and E[X?] = 1/2", so B = 2". We think of this random variable as

not so reasonable because with a small probability, it can be 1, which “surprises” us.

Proposition 1.1 (Concentration). Let X >0 a.s. If X is B-reasonable, then
B
P(X 2 t|X]l2) < -

Here, || X|2 := /E[X?]. We can restate the definition of a B-reasonable random
variable as
I1Xla < BY*X|l2.



Proof. Use Markov’s inequality. O

Remark 1.1. Compare this concentration result with Chebyshev’s inequality, which gives
a rate of decay of 1/t2.

Proposition 1.2 (Anti-concentration). Let X > 0 a.s. If X is B-reasonable, then for
0<t<l,

1—t%)?

B(X > t)x]y) > L0

We will not prove this, but you can prove it as an exercise or find the proof in the
textbook.

Lemma 1.1 (Bonami). Let f : {£1}" — R have deg f < k, and let X ~ {£1}". Then
f(X) is 9%-reasonable. That is,

Ex iy [f(X)Y] < 9 (Exgary [f(X)?])2
We can also think of this as
£l < (V3)X|I f]l2.

Proof of Bonami’s lemma. Recall the derivative

f(xi»—wrl) _ f(xi’_)fl) .

Dif(z) =

We can similarly define the operator

These two give a representation of f:
f(z)=X;-Dif(z) + Eif(x).

Note that D;f and E;f are functions that don’t depend on z;. In particular, D;f has
degree < k — 1, and E;f has degree < k.

Now we proceed by induction on n and k (for each k, we do induction on n, then overall
induct over k). For n = 0, a degree 0 function is a constant, so this inequality holds. If
n > 1, write

f(x) = Xy - Dnf(x) = Enf(2),

and define the random variables

d = D, f(X), e=FE,f(X), where X1,..., X, ~ {£1}.



Then
Ex a1y [f(X)Y] = E[(Xnd + €)*],
which we want to compare to
9 (E[f(X)*)? = 9*(E[X,d + w)?])*.
To compare these, use the binomial theorem and the linearity of expectation:

E[(Xnd + €)*] = E[X1d*] + 4E[X2d%] + 6 E[X2d?e?] + 4E[X7de’] + Ele]
= E[d"] + 6 E[d?e?] 4 E[e].

On the other side, we have

O (E[(Xnd +w)?))? = 9°(E[X7d?| + 2E[Xrde] + E[e?])”
= 9%((E[d])* + 2 E[d*| E[¢*] + (E[¢*])”)

By the inductive hypothesis, we know that E[d*] < 9¥~1(E[d?])? and E[d*] < 9%(E[e?])2.
By Cauchy-Schwarz,

6 E[d%e?] < 6+/E[d*] E[ed]
< 6V9F-1 E[d*|V9* E[e?]
= 2. 9*E[d?| E[¢?].

Now compare the two sides term by term. O

Recall the noise operator T),f(z) = Ey ,corr. with z[f(Y)]. We know that fp?(S) =
plSI2F(S).

Corollary 1.1. Let f : {£1}" = R, and let f~% = 3" ¢_, F(S)*xs. Then

T3 = lla < 1F7 e

Proof. Using Bonami’s lemma,
1(5) ™ lla = () I~ < 1F 7 e 0

1.2 Hypercontractivity and its consequences

Theorem 1.1 ((4,2)-hypercontractivity). For all f : {£1}" — R,
1Ty 5 flla < [ f]]2-

3



More generally, we can say [Ty, z=7fllq < [ f|l2 for all ¢ > 2.
Proof. The proof is similar to the proof of Bonami’s lemma. O

Bonami’s lemma tells you how reasonable low-degree functions are. On the other hand,
hypercontractivity tells you how smooth the function becomes once you apply the noise
operator.

Theorem 1.2 ((2,4/3)-hypercontractivity). For all f: {£1}" — R,
T3 sl < 1y
Proof.

1Ty, 513 = BT, 5./ (X)?)
= (T} 5f(X)% Ty, 5 (X))

() R () e

()

=(/, T1/3f )
Using Holder’s inequality with p = 4/3 and ¢ = 4,

<N fllaysllTiysflla
Using the (4, 2)-Hypercontractivity with Tl/\/g(Tl/\/gf),

< 1ol 5z
Now divide both sides by HTl/\/ngg. O
Corollary 1.2. For all f: {£1}" = R,
Staby /3(f) < Hf||z21/3'
Proof.
Staby /3(f) < (11, 5/ 11/ y3/)

< ”Tl/\/ng%
< £ 135 H



Corollary 1.3 (Small-set expansion of noisy hypercube). Let f : {£1}" — {0,1} and let
a=E[f] =Px )2 (f(X) =1). Then

2
Stabya(f) < (( 17 (x >\4/3]>3/4> 2

(07

Remark 1.2. This has a combinatorial interpretation:

Stabl/S(f) = IE’(X,Y) 1/3-corr. [f(X)f(Y)}
=P(f(X) =DP(f(Y) =1[ f(X)=1)
=aP(f(Y)=1]f(X)=1),

So this says that
P(f(Y)=1] f(X)=1) <a'/%

Thinking of this in terms of a random walk on the hypercube, if we take f(z) = 1i,eay,
we get behavior of the form

P(Y ¢ A|XeA)>1—al/2
Here is a key corollary:

Corollary 1.4. Let f : {£1}" — {£1}, and let g = D;f : {£1}" — {+1,0,—1}. Define
the 1/3-influence as

IS|-1
f{"? (f) := Staby 5(Dif) = > F(S ( > :

S

Then
f () < (Inf;(£))¥2.

Proof. Since D;f takes +1-values, we have
Staby3(Dif) < |IDif 33
= ((E[|D; f(X)[]/*)*/)?
= ((B[|D; f(X)[]?)*/*)?
—_—————
Inf;(f
3

)
= (Inf(f))*. O

Next time, we will see an application of hypercontractivity to proving the KKL theorem:



Theorem 1.3 (Kahn-Kalai-Linial). For f:{£1}" — {£1},

Maz Inf(f) > Q(Var(f) 2"

).

n

Remark 1.3. Compare this to the Poincaré inequality, which gives

Var(f)

Max Inf(f) > -

We will also see Friedgut’s theorem and the FKN theorem:
Theorem 1.4 (Friedgut). Any function f : {£1}" — {£1} is e-close to a 200U/ junta,

Theorem 1.5 (Friedgut-Kalai-Naor). If f : {£1}" — {£1} has W=Y(f) > 1 — ¢ (that is,

~

>1si<1 f(S)2>1—¢), then f is O(e)-close to a dictator function.
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